
Non-blocking networks based on expander graphs

Abhiram Ranade
IIT Bombay

September 22, 2018
ELGGA, BITS Pilani, Hyderabad

Non-blocking Networks

Design a network for a telephone switch

I N input nodes, N output nodes, internal nodes and edges.

I Goal: Given a permutation π establish node disjoint
connection from input i to output π(i)

I Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output.
O(N2) wires. Too expensive.

Can we design a network using O(N log N) edges, vertices?
Ω(N log N) edges necessary. Shannon 1950

Non-blocking Networks

Design a network for a telephone switch

I N input nodes, N output nodes, internal nodes and edges.

I Goal: Given a permutation π establish node disjoint
connection from input i to output π(i)

I Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output.
O(N2) wires. Too expensive.

Can we design a network using O(N log N) edges, vertices?
Ω(N log N) edges necessary. Shannon 1950

Non-blocking Networks

Design a network for a telephone switch

I N input nodes, N output nodes, internal nodes and edges.

I Goal: Given a permutation π establish node disjoint
connection from input i to output π(i)

I Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output.
O(N2) wires. Too expensive.

Can we design a network using O(N log N) edges, vertices?
Ω(N log N) edges necessary. Shannon 1950

Non-blocking Networks

Design a network for a telephone switch

I N input nodes, N output nodes, internal nodes and edges.

I Goal: Given a permutation π establish node disjoint
connection from input i to output π(i)

I Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output.
O(N2) wires. Too expensive.

Can we design a network using O(N log N) edges, vertices?
Ω(N log N) edges necessary. Shannon 1950

Non-blocking Networks

Design a network for a telephone switch

I N input nodes, N output nodes, internal nodes and edges.

I Goal: Given a permutation π establish node disjoint
connection from input i to output π(i)

I Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output.
O(N2) wires. Too expensive.

Can we design a network using O(N log N) edges, vertices?
Ω(N log N) edges necessary. Shannon 1950

Non-blocking Networks

Design a network for a telephone switch

I N input nodes, N output nodes, internal nodes and edges.

I Goal: Given a permutation π establish node disjoint
connection from input i to output π(i)

I Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output.
O(N2) wires. Too expensive.

Can we design a network using O(N log N) edges, vertices?
Ω(N log N) edges necessary. Shannon 1950

Non-blocking Networks

Design a network for a telephone switch

I N input nodes, N output nodes, internal nodes and edges.

I Goal: Given a permutation π establish node disjoint
connection from input i to output π(i)

I Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output.

O(N2) wires. Too expensive.

Can we design a network using O(N log N) edges, vertices?
Ω(N log N) edges necessary. Shannon 1950

Non-blocking Networks

Design a network for a telephone switch

I N input nodes, N output nodes, internal nodes and edges.

I Goal: Given a permutation π establish node disjoint
connection from input i to output π(i)

I Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output.
O(N2) wires. Too expensive.

Can we design a network using O(N log N) edges, vertices?
Ω(N log N) edges necessary. Shannon 1950

Non-blocking Networks

Design a network for a telephone switch

I N input nodes, N output nodes, internal nodes and edges.

I Goal: Given a permutation π establish node disjoint
connection from input i to output π(i)

I Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output.
O(N2) wires. Too expensive.

Can we design a network using O(N log N) edges, vertices?

Ω(N log N) edges necessary. Shannon 1950

Non-blocking Networks

Design a network for a telephone switch

I N input nodes, N output nodes, internal nodes and edges.

I Goal: Given a permutation π establish node disjoint
connection from input i to output π(i)

I Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output.
O(N2) wires. Too expensive.

Can we design a network using O(N log N) edges, vertices?
Ω(N log N) edges necessary.

Shannon 1950

Non-blocking Networks

Design a network for a telephone switch

I N input nodes, N output nodes, internal nodes and edges.

I Goal: Given a permutation π establish node disjoint
connection from input i to output π(i)

I Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output.
O(N2) wires. Too expensive.

Can we design a network using O(N log N) edges, vertices?
Ω(N log N) edges necessary. Shannon 1950

Outline

I Some relevant networks

I The Multibutterfly

I Path selection algorithm

Outline

I Some relevant networks

I The Multibutterfly

I Path selection algorithm

Outline

I Some relevant networks

I The Multibutterfly

I Path selection algorithm

Outline

I Some relevant networks

I The Multibutterfly

I Path selection algorithm

Some relevant networks: Butterfly

Butterfly network B(N)

N = 2n inputs, N = 2n outputs

Inputs : X : B(N/2)
B(N/2) : Outputs

Unique path from any input i to
any output j .

1. If each i connects to random π(i), then N/ log N vertex
disjoint paths can be established with high probability.

2. ∃ permutation π such that at most
√

N vertex disjoint paths
can be established.

3. Edge disjoint paths exist for π(i) = i + α mod N, all α

Some relevant networks: Butterfly

Butterfly network B(N)

N = 2n inputs, N = 2n outputs

Inputs : X : B(N/2)
B(N/2) : Outputs

Unique path from any input i to
any output j .

1. If each i connects to random π(i), then N/ log N vertex
disjoint paths can be established with high probability.

2. ∃ permutation π such that at most
√

N vertex disjoint paths
can be established.

3. Edge disjoint paths exist for π(i) = i + α mod N, all α

Some relevant networks: Butterfly

Butterfly network B(N)

N = 2n inputs, N = 2n outputs

Inputs : X : B(N/2)
B(N/2) : Outputs

Unique path from any input i to
any output j .

1. If each i connects to random π(i), then N/ log N vertex
disjoint paths can be established with high probability.

2. ∃ permutation π such that at most
√

N vertex disjoint paths
can be established.

3. Edge disjoint paths exist for π(i) = i + α mod N, all α

Some relevant networks: Butterfly

Butterfly network B(N)

N = 2n inputs, N = 2n outputs

Inputs : X : B(N/2)
B(N/2) : Outputs

Unique path from any input i to
any output j .

1. If each i connects to random π(i), then N/ log N vertex
disjoint paths can be established with high probability.

2. ∃ permutation π such that at most
√

N vertex disjoint paths
can be established.

3. Edge disjoint paths exist for π(i) = i + α mod N, all α

Some relevant networks: Butterfly

Butterfly network B(N)

N = 2n inputs, N = 2n outputs

Inputs : X : B(N/2)
B(N/2) : Outputs

Unique path from any input i to
any output j .

1. If each i connects to random π(i), then N/ log N vertex
disjoint paths can be established with high probability.

2. ∃ permutation π such that at most
√

N vertex disjoint paths
can be established.

3. Edge disjoint paths exist for π(i) = i + α mod N, all α

Some relevant networks: Butterfly

Butterfly network B(N)

N = 2n inputs, N = 2n outputs

Inputs : X : B(N/2)
B(N/2) : Outputs

Unique path from any input i to
any output j .

1. If each i connects to random π(i), then N/ log N vertex
disjoint paths can be established with high probability.

2. ∃ permutation π such that at most
√

N vertex disjoint paths
can be established.

3. Edge disjoint paths exist for π(i) = i + α mod N, all α

Some relevant networks: Butterfly

Butterfly network B(N)

N = 2n inputs, N = 2n outputs

Inputs : X : B(N/2)
B(N/2) : Outputs

Unique path from any input i to
any output j .

1. If each i connects to random π(i), then N/ log N vertex
disjoint paths can be established with high probability.

2. ∃ permutation π such that at most
√

N vertex disjoint paths
can be established.

3. Edge disjoint paths exist for π(i) = i + α mod N, all α

Some relevant networks: Butterfly

Butterfly network B(N)

N = 2n inputs, N = 2n outputs

Inputs : X : B(N/2)
B(N/2) : Outputs

Unique path from any input i to
any output j .

1. If each i connects to random π(i), then N/ log N vertex
disjoint paths can be established with high probability.

2. ∃ permutation π such that at most
√

N vertex disjoint paths
can be established.

3. Edge disjoint paths exist for π(i) = i + α mod N, all α

Benes Network: Be(n) = B(N) : B(N)−1

Theorem: We can establish vertex disjoint paths for any π.

Benes Network: Be(n) = B(N) : B(N)−1

Theorem: We can establish vertex disjoint paths for any π.

Benes Network: Be(n) = B(N) : B(N)−1

Theorem: We can establish vertex disjoint paths for any π.

Algorithm to make connections in Benes Network

Algorithm has to make N connections.

Assign N/2 connections to top Benes, N/2 to bottom Benes s.t.

I Top, Bottom Benes are required to recursively realize smaller
permutations.

I No conflicts produced in outermost wiring layers.

i —- π(i) path uses top ⇔ i + N
2 —- π(i + N

2) path uses bottom

Similarly for the outputs.

Algorithm to make connections in Benes Network

Algorithm has to make N connections.

Assign N/2 connections to top Benes, N/2 to bottom Benes s.t.

I Top, Bottom Benes are required to recursively realize smaller
permutations.

I No conflicts produced in outermost wiring layers.

i —- π(i) path uses top ⇔ i + N
2 —- π(i + N

2) path uses bottom

Similarly for the outputs.

Algorithm to make connections in Benes Network

Algorithm has to make N connections.

Assign N/2 connections to top Benes, N/2 to bottom Benes s.t.

I Top, Bottom Benes are required to recursively realize smaller
permutations.

I No conflicts produced in outermost wiring layers.

i —- π(i) path uses top ⇔ i + N
2 —- π(i + N

2) path uses bottom

Similarly for the outputs.

Algorithm to make connections in Benes Network

Algorithm has to make N connections.

Assign N/2 connections to top Benes, N/2 to bottom Benes s.t.

I Top, Bottom Benes are required to recursively realize smaller
permutations.

I No conflicts produced in outermost wiring layers.

i —- π(i) path uses top ⇔ i + N
2 —- π(i + N

2) path uses bottom

Similarly for the outputs.

Algorithm to make connections in Benes Network

Algorithm has to make N connections.

Assign N/2 connections to top Benes, N/2 to bottom Benes s.t.

I Top, Bottom Benes are required to recursively realize smaller
permutations.

I No conflicts produced in outermost wiring layers.

i —- π(i) path uses top ⇔ i + N
2 —- π(i + N

2) path uses bottom

Similarly for the outputs.

Algorithm to make connections in Benes Network

Algorithm has to make N connections.

Assign N/2 connections to top Benes, N/2 to bottom Benes s.t.

I Top, Bottom Benes are required to recursively realize smaller
permutations.

I No conflicts produced in outermost wiring layers.

i —- π(i) path uses top ⇔ i + N
2 —- π(i + N

2) path uses bottom

Similarly for the outputs.

Algorithm to make connections in Benes Network

Algorithm has to make N connections.

Assign N/2 connections to top Benes, N/2 to bottom Benes s.t.

I Top, Bottom Benes are required to recursively realize smaller
permutations.

I No conflicts produced in outermost wiring layers.

i —- π(i) path uses top ⇔ i + N
2 —- π(i + N

2) path uses bottom

Similarly for the outputs.

C (i) = i + N
2 , C (i + N

2) = i i ,C (i) : competing pair.

Phased algorithm:
Invariant: Competing pairs are both assigned or both not.

I Consider any unassigned competing pair of inputs i ,C (i).
I Connect i – π(i) through top, C (i) – π(C (i)) through bottom.
I If π(i), π(C (i)) are competing pairs, then phase ends.
I Otherwise we have two half touched pairs on outputs.
I Connect C (π(i)) back using bottom pair.
I Connect C (π(C (i))) back using top pair.
I Phase ends, or two half touched pairs on inputs. Repeat..

C (i) = i + N
2 , C (i + N

2) = i i ,C (i) : competing pair.

Phased algorithm:

Invariant: Competing pairs are both assigned or both not.

I Consider any unassigned competing pair of inputs i ,C (i).
I Connect i – π(i) through top, C (i) – π(C (i)) through bottom.
I If π(i), π(C (i)) are competing pairs, then phase ends.
I Otherwise we have two half touched pairs on outputs.
I Connect C (π(i)) back using bottom pair.
I Connect C (π(C (i))) back using top pair.
I Phase ends, or two half touched pairs on inputs. Repeat..

C (i) = i + N
2 , C (i + N

2) = i i ,C (i) : competing pair.

Phased algorithm:
Invariant: Competing pairs are both assigned or both not.

I Consider any unassigned competing pair of inputs i ,C (i).
I Connect i – π(i) through top, C (i) – π(C (i)) through bottom.
I If π(i), π(C (i)) are competing pairs, then phase ends.
I Otherwise we have two half touched pairs on outputs.
I Connect C (π(i)) back using bottom pair.
I Connect C (π(C (i))) back using top pair.
I Phase ends, or two half touched pairs on inputs. Repeat..

C (i) = i + N
2 , C (i + N

2) = i i ,C (i) : competing pair.

Phased algorithm:
Invariant: Competing pairs are both assigned or both not.

I Consider any unassigned competing pair of inputs i ,C (i).

I Connect i – π(i) through top, C (i) – π(C (i)) through bottom.
I If π(i), π(C (i)) are competing pairs, then phase ends.
I Otherwise we have two half touched pairs on outputs.
I Connect C (π(i)) back using bottom pair.
I Connect C (π(C (i))) back using top pair.
I Phase ends, or two half touched pairs on inputs. Repeat..

C (i) = i + N
2 , C (i + N

2) = i i ,C (i) : competing pair.

Phased algorithm:
Invariant: Competing pairs are both assigned or both not.

I Consider any unassigned competing pair of inputs i ,C (i).
I Connect i – π(i) through top, C (i) – π(C (i)) through bottom.

I If π(i), π(C (i)) are competing pairs, then phase ends.
I Otherwise we have two half touched pairs on outputs.
I Connect C (π(i)) back using bottom pair.
I Connect C (π(C (i))) back using top pair.
I Phase ends, or two half touched pairs on inputs. Repeat..

C (i) = i + N
2 , C (i + N

2) = i i ,C (i) : competing pair.

Phased algorithm:
Invariant: Competing pairs are both assigned or both not.

I Consider any unassigned competing pair of inputs i ,C (i).
I Connect i – π(i) through top, C (i) – π(C (i)) through bottom.
I If π(i), π(C (i)) are competing pairs, then phase ends.

I Otherwise we have two half touched pairs on outputs.
I Connect C (π(i)) back using bottom pair.
I Connect C (π(C (i))) back using top pair.
I Phase ends, or two half touched pairs on inputs. Repeat..

C (i) = i + N
2 , C (i + N

2) = i i ,C (i) : competing pair.

Phased algorithm:
Invariant: Competing pairs are both assigned or both not.

I Consider any unassigned competing pair of inputs i ,C (i).
I Connect i – π(i) through top, C (i) – π(C (i)) through bottom.
I If π(i), π(C (i)) are competing pairs, then phase ends.
I Otherwise we have two half touched pairs on outputs.

I Connect C (π(i)) back using bottom pair.
I Connect C (π(C (i))) back using top pair.
I Phase ends, or two half touched pairs on inputs. Repeat..

C (i) = i + N
2 , C (i + N

2) = i i ,C (i) : competing pair.

Phased algorithm:
Invariant: Competing pairs are both assigned or both not.

I Consider any unassigned competing pair of inputs i ,C (i).
I Connect i – π(i) through top, C (i) – π(C (i)) through bottom.
I If π(i), π(C (i)) are competing pairs, then phase ends.
I Otherwise we have two half touched pairs on outputs.
I Connect C (π(i)) back using bottom pair.

I Connect C (π(C (i))) back using top pair.
I Phase ends, or two half touched pairs on inputs. Repeat..

C (i) = i + N
2 , C (i + N

2) = i i ,C (i) : competing pair.

Phased algorithm:
Invariant: Competing pairs are both assigned or both not.

I Consider any unassigned competing pair of inputs i ,C (i).
I Connect i – π(i) through top, C (i) – π(C (i)) through bottom.
I If π(i), π(C (i)) are competing pairs, then phase ends.
I Otherwise we have two half touched pairs on outputs.
I Connect C (π(i)) back using bottom pair.
I Connect C (π(C (i))) back using top pair.

I Phase ends, or two half touched pairs on inputs. Repeat..

C (i) = i + N
2 , C (i + N

2) = i i ,C (i) : competing pair.

Phased algorithm:
Invariant: Competing pairs are both assigned or both not.

I Consider any unassigned competing pair of inputs i ,C (i).
I Connect i – π(i) through top, C (i) – π(C (i)) through bottom.
I If π(i), π(C (i)) are competing pairs, then phase ends.
I Otherwise we have two half touched pairs on outputs.
I Connect C (π(i)) back using bottom pair.
I Connect C (π(C (i))) back using top pair.
I Phase ends, or two half touched pairs on inputs.

Repeat..

C (i) = i + N
2 , C (i + N

2) = i i ,C (i) : competing pair.

Phased algorithm:
Invariant: Competing pairs are both assigned or both not.

I Consider any unassigned competing pair of inputs i ,C (i).
I Connect i – π(i) through top, C (i) – π(C (i)) through bottom.
I If π(i), π(C (i)) are competing pairs, then phase ends.
I Otherwise we have two half touched pairs on outputs.
I Connect C (π(i)) back using bottom pair.
I Connect C (π(C (i))) back using top pair.
I Phase ends, or two half touched pairs on inputs. Repeat..

Multibutterfly Md (N)

d edges to top and d edges to bot-
tom from each node.

d = 2 shown.

Connections are random, s.t. all
indegree, outdegree are 2d .

Produces nice expansion proper-
ties.

Effect of random edges: W.h.p. expansion from level to level:
k nodes in level 0 connect to βk nodes in top, and βk nodes in
bottom, for k ≤ αN.

Even for β > 1 d = O(1) suffices.

Multibutterfly Md (N)

d edges to top and d edges to bot-
tom from each node.

d = 2 shown.

Connections are random, s.t. all
indegree, outdegree are 2d .

Produces nice expansion proper-
ties.

Effect of random edges: W.h.p. expansion from level to level:
k nodes in level 0 connect to βk nodes in top, and βk nodes in
bottom, for k ≤ αN.

Even for β > 1 d = O(1) suffices.

Multibutterfly Md (N)

d edges to top and d edges to bot-
tom from each node.

d = 2 shown.

Connections are random, s.t. all
indegree, outdegree are 2d .

Produces nice expansion proper-
ties.

Effect of random edges: W.h.p. expansion from level to level:
k nodes in level 0 connect to βk nodes in top, and βk nodes in
bottom, for k ≤ αN.

Even for β > 1 d = O(1) suffices.

Multibutterfly Md (N)

d edges to top and d edges to bot-
tom from each node.

d = 2 shown.

Connections are random, s.t. all
indegree, outdegree are 2d .

Produces nice expansion proper-
ties.

Effect of random edges: W.h.p. expansion from level to level:
k nodes in level 0 connect to βk nodes in top, and βk nodes in
bottom, for k ≤ αN.

Even for β > 1 d = O(1) suffices.

Multibutterfly Md (N)

d edges to top and d edges to bot-
tom from each node.

d = 2 shown.

Connections are random, s.t. all
indegree, outdegree are 2d .

Produces nice expansion proper-
ties.

Effect of random edges: W.h.p. expansion from level to level:
k nodes in level 0 connect to βk nodes in top, and βk nodes in
bottom, for k ≤ αN.

Even for β > 1 d = O(1) suffices.

Multibutterfly Md (N)

d edges to top and d edges to bot-
tom from each node.

d = 2 shown.

Connections are random, s.t. all
indegree, outdegree are 2d .

Produces nice expansion proper-
ties.

Effect of random edges: W.h.p. expansion from level to level:
k nodes in level 0 connect to βk nodes in top, and βk nodes in
bottom, for k ≤ αN.

Even for β > 1 d = O(1) suffices.

Multibutterfly Md (N)

d edges to top and d edges to bot-
tom from each node.

d = 2 shown.

Connections are random, s.t. all
indegree, outdegree are 2d .

Produces nice expansion proper-
ties.

Effect of random edges: W.h.p. expansion from level to level:
k nodes in level 0 connect to βk nodes in top, and βk nodes in
bottom, for k ≤ αN.

Even for β > 1 d = O(1) suffices.

(α, β,N , d) concentrator

is a bipartite graph (U,V ,E) where |U| = N, |V | = N/2 degree in
U,V are resp. at most d , 2d , and every subset of k ≤ αN nodes
of U has edges to at least βk nodes of V .

Concentrators connect level 0 to top and to bottor Md(N/2)s

Theorem: Concentrator exists for α > 0, β > 1 s.t. αβ < 1, and

d > β + 1 +
β + 1 + ln 4β

ln(1/2αβ)

Proof: Randomized construction: Start with vertices U,V
I Replace each vertex in U,V resp. by d , 2d vertices.
I Pick a random matching on the two pairs of Nd vertices.
I Collapse vertices back.
I U have degree ≤ d , V have degree ≤ 2d

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

If you increase d , probability increases very rapidly.

(α, β,N , d) concentrator
is a bipartite graph (U,V ,E) where |U| = N, |V | = N/2 degree in
U,V are resp. at most d , 2d , and every subset of k ≤ αN nodes
of U has edges to at least βk nodes of V .

Concentrators connect level 0 to top and to bottor Md(N/2)s

Theorem: Concentrator exists for α > 0, β > 1 s.t. αβ < 1, and

d > β + 1 +
β + 1 + ln 4β

ln(1/2αβ)

Proof: Randomized construction: Start with vertices U,V
I Replace each vertex in U,V resp. by d , 2d vertices.
I Pick a random matching on the two pairs of Nd vertices.
I Collapse vertices back.
I U have degree ≤ d , V have degree ≤ 2d

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

If you increase d , probability increases very rapidly.

(α, β,N , d) concentrator
is a bipartite graph (U,V ,E) where |U| = N, |V | = N/2 degree in
U,V are resp. at most d , 2d , and every subset of k ≤ αN nodes
of U has edges to at least βk nodes of V .

Concentrators connect level 0 to top and to bottor Md(N/2)s

Theorem: Concentrator exists for α > 0, β > 1 s.t. αβ < 1, and

d > β + 1 +
β + 1 + ln 4β

ln(1/2αβ)

Proof: Randomized construction: Start with vertices U,V
I Replace each vertex in U,V resp. by d , 2d vertices.
I Pick a random matching on the two pairs of Nd vertices.
I Collapse vertices back.
I U have degree ≤ d , V have degree ≤ 2d

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

If you increase d , probability increases very rapidly.

(α, β,N , d) concentrator
is a bipartite graph (U,V ,E) where |U| = N, |V | = N/2 degree in
U,V are resp. at most d , 2d , and every subset of k ≤ αN nodes
of U has edges to at least βk nodes of V .

Concentrators connect level 0 to top and to bottor Md(N/2)s

Theorem: Concentrator exists for α > 0, β > 1 s.t. αβ < 1, and

d > β + 1 +
β + 1 + ln 4β

ln(1/2αβ)

Proof: Randomized construction: Start with vertices U,V
I Replace each vertex in U,V resp. by d , 2d vertices.
I Pick a random matching on the two pairs of Nd vertices.
I Collapse vertices back.
I U have degree ≤ d , V have degree ≤ 2d

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

If you increase d , probability increases very rapidly.

(α, β,N , d) concentrator
is a bipartite graph (U,V ,E) where |U| = N, |V | = N/2 degree in
U,V are resp. at most d , 2d , and every subset of k ≤ αN nodes
of U has edges to at least βk nodes of V .

Concentrators connect level 0 to top and to bottor Md(N/2)s

Theorem: Concentrator exists for α > 0, β > 1 s.t. αβ < 1, and

d > β + 1 +
β + 1 + ln 4β

ln(1/2αβ)

Proof: Randomized construction: Start with vertices U,V

I Replace each vertex in U,V resp. by d , 2d vertices.
I Pick a random matching on the two pairs of Nd vertices.
I Collapse vertices back.
I U have degree ≤ d , V have degree ≤ 2d

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

If you increase d , probability increases very rapidly.

(α, β,N , d) concentrator
is a bipartite graph (U,V ,E) where |U| = N, |V | = N/2 degree in
U,V are resp. at most d , 2d , and every subset of k ≤ αN nodes
of U has edges to at least βk nodes of V .

Concentrators connect level 0 to top and to bottor Md(N/2)s

Theorem: Concentrator exists for α > 0, β > 1 s.t. αβ < 1, and

d > β + 1 +
β + 1 + ln 4β

ln(1/2αβ)

Proof: Randomized construction: Start with vertices U,V
I Replace each vertex in U,V resp. by d , 2d vertices.

I Pick a random matching on the two pairs of Nd vertices.
I Collapse vertices back.
I U have degree ≤ d , V have degree ≤ 2d

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

If you increase d , probability increases very rapidly.

(α, β,N , d) concentrator
is a bipartite graph (U,V ,E) where |U| = N, |V | = N/2 degree in
U,V are resp. at most d , 2d , and every subset of k ≤ αN nodes
of U has edges to at least βk nodes of V .

Concentrators connect level 0 to top and to bottor Md(N/2)s

Theorem: Concentrator exists for α > 0, β > 1 s.t. αβ < 1, and

d > β + 1 +
β + 1 + ln 4β

ln(1/2αβ)

Proof: Randomized construction: Start with vertices U,V
I Replace each vertex in U,V resp. by d , 2d vertices.
I Pick a random matching on the two pairs of Nd vertices.

I Collapse vertices back.
I U have degree ≤ d , V have degree ≤ 2d

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

If you increase d , probability increases very rapidly.

(α, β,N , d) concentrator
is a bipartite graph (U,V ,E) where |U| = N, |V | = N/2 degree in
U,V are resp. at most d , 2d , and every subset of k ≤ αN nodes
of U has edges to at least βk nodes of V .

Concentrators connect level 0 to top and to bottor Md(N/2)s

Theorem: Concentrator exists for α > 0, β > 1 s.t. αβ < 1, and

d > β + 1 +
β + 1 + ln 4β

ln(1/2αβ)

Proof: Randomized construction: Start with vertices U,V
I Replace each vertex in U,V resp. by d , 2d vertices.
I Pick a random matching on the two pairs of Nd vertices.
I Collapse vertices back.

I U have degree ≤ d , V have degree ≤ 2d
Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

If you increase d , probability increases very rapidly.

(α, β,N , d) concentrator
is a bipartite graph (U,V ,E) where |U| = N, |V | = N/2 degree in
U,V are resp. at most d , 2d , and every subset of k ≤ αN nodes
of U has edges to at least βk nodes of V .

Concentrators connect level 0 to top and to bottor Md(N/2)s

Theorem: Concentrator exists for α > 0, β > 1 s.t. αβ < 1, and

d > β + 1 +
β + 1 + ln 4β

ln(1/2αβ)

Proof: Randomized construction: Start with vertices U,V
I Replace each vertex in U,V resp. by d , 2d vertices.
I Pick a random matching on the two pairs of Nd vertices.
I Collapse vertices back.
I U have degree ≤ d , V have degree ≤ 2d

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

If you increase d , probability increases very rapidly.

(α, β,N , d) concentrator
is a bipartite graph (U,V ,E) where |U| = N, |V | = N/2 degree in
U,V are resp. at most d , 2d , and every subset of k ≤ αN nodes
of U has edges to at least βk nodes of V .

Concentrators connect level 0 to top and to bottor Md(N/2)s

Theorem: Concentrator exists for α > 0, β > 1 s.t. αβ < 1, and

d > β + 1 +
β + 1 + ln 4β

ln(1/2αβ)

Proof: Randomized construction: Start with vertices U,V
I Replace each vertex in U,V resp. by d , 2d vertices.
I Pick a random matching on the two pairs of Nd vertices.
I Collapse vertices back.
I U have degree ≤ d , V have degree ≤ 2d

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

If you increase d , probability increases very rapidly.

(α, β,N , d) concentrator
is a bipartite graph (U,V ,E) where |U| = N, |V | = N/2 degree in
U,V are resp. at most d , 2d , and every subset of k ≤ αN nodes
of U has edges to at least βk nodes of V .

Concentrators connect level 0 to top and to bottor Md(N/2)s

Theorem: Concentrator exists for α > 0, β > 1 s.t. αβ < 1, and

d > β + 1 +
β + 1 + ln 4β

ln(1/2αβ)

Proof: Randomized construction: Start with vertices U,V
I Replace each vertex in U,V resp. by d , 2d vertices.
I Pick a random matching on the two pairs of Nd vertices.
I Collapse vertices back.
I U have degree ≤ d , V have degree ≤ 2d

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0.

(Next)

If you increase d , probability increases very rapidly.

(α, β,N , d) concentrator
is a bipartite graph (U,V ,E) where |U| = N, |V | = N/2 degree in
U,V are resp. at most d , 2d , and every subset of k ≤ αN nodes
of U has edges to at least βk nodes of V .

Concentrators connect level 0 to top and to bottor Md(N/2)s

Theorem: Concentrator exists for α > 0, β > 1 s.t. αβ < 1, and

d > β + 1 +
β + 1 + ln 4β

ln(1/2αβ)

Proof: Randomized construction: Start with vertices U,V
I Replace each vertex in U,V resp. by d , 2d vertices.
I Pick a random matching on the two pairs of Nd vertices.
I Collapse vertices back.
I U have degree ≤ d , V have degree ≤ 2d

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

If you increase d , probability increases very rapidly.

(α, β,N , d) concentrator
is a bipartite graph (U,V ,E) where |U| = N, |V | = N/2 degree in
U,V are resp. at most d , 2d , and every subset of k ≤ αN nodes
of U has edges to at least βk nodes of V .

Concentrators connect level 0 to top and to bottor Md(N/2)s

Theorem: Concentrator exists for α > 0, β > 1 s.t. αβ < 1, and

d > β + 1 +
β + 1 + ln 4β

ln(1/2αβ)

Proof: Randomized construction: Start with vertices U,V
I Replace each vertex in U,V resp. by d , 2d vertices.
I Pick a random matching on the two pairs of Nd vertices.
I Collapse vertices back.
I U have degree ≤ d , V have degree ≤ 2d

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

If you increase d , probability increases very rapidly.

Probability of expansion

Assume not concentrator.
∃S ⊆ U s.t. |S | = k ≤ αN and |T = Nbr(S)| < βk .

k can range between 1 and αN
For each k there are

(N
k

)
choices for S , and

(N/2
βk

)
choices for T .

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)
Pr[fixed T ⊇ nbrhood of fixed S]

In the construction we first explode S to S ′ with kd = s vertices
and T to T ′ 2βkd = t vertices.

Pr[fixed T ⊇ nbrhood of fixed S] = t·t−1···t−s+1
Nd ···Nd−1···Nd−s+1

≤
(

t
Nd

)s
=
(
2βk
N

)kd

Probability of expansion
Assume not concentrator.

∃S ⊆ U s.t. |S | = k ≤ αN and |T = Nbr(S)| < βk .

k can range between 1 and αN
For each k there are

(N
k

)
choices for S , and

(N/2
βk

)
choices for T .

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)
Pr[fixed T ⊇ nbrhood of fixed S]

In the construction we first explode S to S ′ with kd = s vertices
and T to T ′ 2βkd = t vertices.

Pr[fixed T ⊇ nbrhood of fixed S] = t·t−1···t−s+1
Nd ···Nd−1···Nd−s+1

≤
(

t
Nd

)s
=
(
2βk
N

)kd

Probability of expansion
Assume not concentrator.
∃S ⊆ U s.t. |S | = k ≤ αN and |T = Nbr(S)| < βk .

k can range between 1 and αN
For each k there are

(N
k

)
choices for S , and

(N/2
βk

)
choices for T .

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)
Pr[fixed T ⊇ nbrhood of fixed S]

In the construction we first explode S to S ′ with kd = s vertices
and T to T ′ 2βkd = t vertices.

Pr[fixed T ⊇ nbrhood of fixed S] = t·t−1···t−s+1
Nd ···Nd−1···Nd−s+1

≤
(

t
Nd

)s
=
(
2βk
N

)kd

Probability of expansion
Assume not concentrator.
∃S ⊆ U s.t. |S | = k ≤ αN and |T = Nbr(S)| < βk .

k can range between 1 and αN

For each k there are
(N
k

)
choices for S , and

(N/2
βk

)
choices for T .

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)
Pr[fixed T ⊇ nbrhood of fixed S]

In the construction we first explode S to S ′ with kd = s vertices
and T to T ′ 2βkd = t vertices.

Pr[fixed T ⊇ nbrhood of fixed S] = t·t−1···t−s+1
Nd ···Nd−1···Nd−s+1

≤
(

t
Nd

)s
=
(
2βk
N

)kd

Probability of expansion
Assume not concentrator.
∃S ⊆ U s.t. |S | = k ≤ αN and |T = Nbr(S)| < βk .

k can range between 1 and αN
For each k there are

(N
k

)
choices for S , and

(N/2
βk

)
choices for T .

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)
Pr[fixed T ⊇ nbrhood of fixed S]

In the construction we first explode S to S ′ with kd = s vertices
and T to T ′ 2βkd = t vertices.

Pr[fixed T ⊇ nbrhood of fixed S] = t·t−1···t−s+1
Nd ···Nd−1···Nd−s+1

≤
(

t
Nd

)s
=
(
2βk
N

)kd

Probability of expansion
Assume not concentrator.
∃S ⊆ U s.t. |S | = k ≤ αN and |T = Nbr(S)| < βk .

k can range between 1 and αN
For each k there are

(N
k

)
choices for S , and

(N/2
βk

)
choices for T .

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)
Pr[fixed T ⊇ nbrhood of fixed S]

In the construction we first explode S to S ′ with kd = s vertices
and T to T ′ 2βkd = t vertices.

Pr[fixed T ⊇ nbrhood of fixed S] = t·t−1···t−s+1
Nd ···Nd−1···Nd−s+1

≤
(

t
Nd

)s
=
(
2βk
N

)kd

Probability of expansion
Assume not concentrator.
∃S ⊆ U s.t. |S | = k ≤ αN and |T = Nbr(S)| < βk .

k can range between 1 and αN
For each k there are

(N
k

)
choices for S , and

(N/2
βk

)
choices for T .

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)
Pr[fixed T ⊇ nbrhood of fixed S]

In the construction we first explode S to S ′ with kd = s vertices
and T to T ′ 2βkd = t vertices.

Pr[fixed T ⊇ nbrhood of fixed S] = t·t−1···t−s+1
Nd ···Nd−1···Nd−s+1

≤
(

t
Nd

)s
=
(
2βk
N

)kd

Probability of expansion
Assume not concentrator.
∃S ⊆ U s.t. |S | = k ≤ αN and |T = Nbr(S)| < βk .

k can range between 1 and αN
For each k there are

(N
k

)
choices for S , and

(N/2
βk

)
choices for T .

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)
Pr[fixed T ⊇ nbrhood of fixed S]

In the construction we first explode S to S ′ with kd = s vertices
and T to T ′ 2βkd = t vertices.

Pr[fixed T ⊇ nbrhood of fixed S] = t·t−1···t−s+1
Nd ···Nd−1···Nd−s+1

≤
(

t
Nd

)s
=
(
2βk
N

)kd

Probability of expansion
Assume not concentrator.
∃S ⊆ U s.t. |S | = k ≤ αN and |T = Nbr(S)| < βk .

k can range between 1 and αN
For each k there are

(N
k

)
choices for S , and

(N/2
βk

)
choices for T .

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)
Pr[fixed T ⊇ nbrhood of fixed S]

In the construction we first explode S to S ′ with kd = s vertices
and T to T ′ 2βkd = t vertices.

Pr[fixed T ⊇ nbrhood of fixed S] = t·t−1···t−s+1
Nd ···Nd−1···Nd−s+1

≤
(

t
Nd

)s

=
(
2βk
N

)kd

Probability of expansion
Assume not concentrator.
∃S ⊆ U s.t. |S | = k ≤ αN and |T = Nbr(S)| < βk .

k can range between 1 and αN
For each k there are

(N
k

)
choices for S , and

(N/2
βk

)
choices for T .

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)
Pr[fixed T ⊇ nbrhood of fixed S]

In the construction we first explode S to S ′ with kd = s vertices
and T to T ′ 2βkd = t vertices.

Pr[fixed T ⊇ nbrhood of fixed S] = t·t−1···t−s+1
Nd ···Nd−1···Nd−s+1

≤
(

t
Nd

)s
=
(
2βk
N

)kd

Probability calculation continued

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)(
2βk

N

)kd

≤
k=αN∑
k=1

(
Ne

k

)k (Ne/2

βk

)βk (2βk

N

)kd

≤
k=αN∑
k=1

((
K

N

)d−β−1
eβ+1(2β)d−β

)k

≤
k=αN∑
k=1

(
αd−β−1eβ+1(2β)d−β

)k
Using

(n
r

)
≤ (ne/r)r , k/N ≤ α

Geometric series is < 1 if:

αd−β−1eβ+1(2β)d−β < 1/2

Simplifying gives the result.

Probability calculation continued

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)(
2βk

N

)kd

≤
k=αN∑
k=1

(
Ne

k

)k (Ne/2

βk

)βk (2βk

N

)kd

≤
k=αN∑
k=1

((
K

N

)d−β−1
eβ+1(2β)d−β

)k

≤
k=αN∑
k=1

(
αd−β−1eβ+1(2β)d−β

)k
Using

(n
r

)
≤ (ne/r)r , k/N ≤ α

Geometric series is < 1 if:

αd−β−1eβ+1(2β)d−β < 1/2

Simplifying gives the result.

Probability calculation continued

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)(
2βk

N

)kd

≤
k=αN∑
k=1

(
Ne

k

)k (Ne/2

βk

)βk (2βk

N

)kd

≤
k=αN∑
k=1

((
K

N

)d−β−1
eβ+1(2β)d−β

)k

≤
k=αN∑
k=1

(
αd−β−1eβ+1(2β)d−β

)k
Using

(n
r

)
≤ (ne/r)r , k/N ≤ α

Geometric series is < 1 if:

αd−β−1eβ+1(2β)d−β < 1/2

Simplifying gives the result.

Probability calculation continued

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)(
2βk

N

)kd

≤
k=αN∑
k=1

(
Ne

k

)k (Ne/2

βk

)βk (2βk

N

)kd

≤
k=αN∑
k=1

((
K

N

)d−β−1
eβ+1(2β)d−β

)k

≤
k=αN∑
k=1

(
αd−β−1eβ+1(2β)d−β

)k
Using

(n
r

)
≤ (ne/r)r , k/N ≤ α

Geometric series is < 1 if:

αd−β−1eβ+1(2β)d−β < 1/2

Simplifying gives the result.

Probability calculation continued

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)(
2βk

N

)kd

≤
k=αN∑
k=1

(
Ne

k

)k (Ne/2

βk

)βk (2βk

N

)kd

≤
k=αN∑
k=1

((
K

N

)d−β−1
eβ+1(2β)d−β

)k

≤
k=αN∑
k=1

(
αd−β−1eβ+1(2β)d−β

)k

Using
(n
r

)
≤ (ne/r)r , k/N ≤ α

Geometric series is < 1 if:

αd−β−1eβ+1(2β)d−β < 1/2

Simplifying gives the result.

Probability calculation continued

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)(
2βk

N

)kd

≤
k=αN∑
k=1

(
Ne

k

)k (Ne/2

βk

)βk (2βk

N

)kd

≤
k=αN∑
k=1

((
K

N

)d−β−1
eβ+1(2β)d−β

)k

≤
k=αN∑
k=1

(
αd−β−1eβ+1(2β)d−β

)k
Using

(n
r

)
≤ (ne/r)r , k/N ≤ α

Geometric series is < 1 if:

αd−β−1eβ+1(2β)d−β < 1/2

Simplifying gives the result.

Probability calculation continued

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)(
2βk

N

)kd

≤
k=αN∑
k=1

(
Ne

k

)k (Ne/2

βk

)βk (2βk

N

)kd

≤
k=αN∑
k=1

((
K

N

)d−β−1
eβ+1(2β)d−β

)k

≤
k=αN∑
k=1

(
αd−β−1eβ+1(2β)d−β

)k
Using

(n
r

)
≤ (ne/r)r , k/N ≤ α

Geometric series is < 1 if:

αd−β−1eβ+1(2β)d−β < 1/2

Simplifying gives the result.

Probability calculation continued

Probability that construction does not give a concentrator:

≤
k=αN∑
k=1

(
N

k

)(
N/2

βk

)(
2βk

N

)kd

≤
k=αN∑
k=1

(
Ne

k

)k (Ne/2

βk

)βk (2βk

N

)kd

≤
k=αN∑
k=1

((
K

N

)d−β−1
eβ+1(2β)d−β

)k

≤
k=αN∑
k=1

(
αd−β−1eβ+1(2β)d−β

)k
Using

(n
r

)
≤ (ne/r)r , k/N ≤ α

Geometric series is < 1 if:

αd−β−1eβ+1(2β)d−β < 1/2

Simplifying gives the result.

What we have at this point..

Consider some submultibutterfly with N ′ inputs.
Each set of αN ′ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly?
Only if we are asking to extend at most αN ′ paths.

Only consider packets going to destinations 0 mod L = 1/2α.
In our submulti at most (N ′/2)/L = N ′α top destinations are valid.
So number of paths requesting will be at most αN ′. top.

By Hall’s Theorem: all paths will extend forward.
So we overdesign the network by a factor L = 1/2α = O(1).
But will extending paths take time = O(finding matching)?

What we have at this point..

Consider some submultibutterfly with N ′ inputs.

Each set of αN ′ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly?
Only if we are asking to extend at most αN ′ paths.

Only consider packets going to destinations 0 mod L = 1/2α.
In our submulti at most (N ′/2)/L = N ′α top destinations are valid.
So number of paths requesting will be at most αN ′. top.

By Hall’s Theorem: all paths will extend forward.
So we overdesign the network by a factor L = 1/2α = O(1).
But will extending paths take time = O(finding matching)?

What we have at this point..

Consider some submultibutterfly with N ′ inputs.
Each set of αN ′ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly?
Only if we are asking to extend at most αN ′ paths.

Only consider packets going to destinations 0 mod L = 1/2α.
In our submulti at most (N ′/2)/L = N ′α top destinations are valid.
So number of paths requesting will be at most αN ′. top.

By Hall’s Theorem: all paths will extend forward.
So we overdesign the network by a factor L = 1/2α = O(1).
But will extending paths take time = O(finding matching)?

What we have at this point..

Consider some submultibutterfly with N ′ inputs.
Each set of αN ′ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly?

Only if we are asking to extend at most αN ′ paths.

Only consider packets going to destinations 0 mod L = 1/2α.
In our submulti at most (N ′/2)/L = N ′α top destinations are valid.
So number of paths requesting will be at most αN ′. top.

By Hall’s Theorem: all paths will extend forward.
So we overdesign the network by a factor L = 1/2α = O(1).
But will extending paths take time = O(finding matching)?

What we have at this point..

Consider some submultibutterfly with N ′ inputs.
Each set of αN ′ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly?
Only if we are asking to extend at most αN ′ paths.

Only consider packets going to destinations 0 mod L = 1/2α.
In our submulti at most (N ′/2)/L = N ′α top destinations are valid.
So number of paths requesting will be at most αN ′. top.

By Hall’s Theorem: all paths will extend forward.
So we overdesign the network by a factor L = 1/2α = O(1).
But will extending paths take time = O(finding matching)?

What we have at this point..

Consider some submultibutterfly with N ′ inputs.
Each set of αN ′ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly?
Only if we are asking to extend at most αN ′ paths.

Only consider packets going to destinations 0 mod L = 1/2α.

In our submulti at most (N ′/2)/L = N ′α top destinations are valid.
So number of paths requesting will be at most αN ′. top.

By Hall’s Theorem: all paths will extend forward.
So we overdesign the network by a factor L = 1/2α = O(1).
But will extending paths take time = O(finding matching)?

What we have at this point..

Consider some submultibutterfly with N ′ inputs.
Each set of αN ′ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly?
Only if we are asking to extend at most αN ′ paths.

Only consider packets going to destinations 0 mod L = 1/2α.
In our submulti at most (N ′/2)/L = N ′α top destinations are valid.

So number of paths requesting will be at most αN ′. top.

By Hall’s Theorem: all paths will extend forward.
So we overdesign the network by a factor L = 1/2α = O(1).
But will extending paths take time = O(finding matching)?

What we have at this point..

Consider some submultibutterfly with N ′ inputs.
Each set of αN ′ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly?
Only if we are asking to extend at most αN ′ paths.

Only consider packets going to destinations 0 mod L = 1/2α.
In our submulti at most (N ′/2)/L = N ′α top destinations are valid.
So number of paths requesting will be at most αN ′. top.

By Hall’s Theorem: all paths will extend forward.
So we overdesign the network by a factor L = 1/2α = O(1).
But will extending paths take time = O(finding matching)?

What we have at this point..

Consider some submultibutterfly with N ′ inputs.
Each set of αN ′ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly?
Only if we are asking to extend at most αN ′ paths.

Only consider packets going to destinations 0 mod L = 1/2α.
In our submulti at most (N ′/2)/L = N ′α top destinations are valid.
So number of paths requesting will be at most αN ′. top.

By Hall’s Theorem: all paths will extend forward.

So we overdesign the network by a factor L = 1/2α = O(1).
But will extending paths take time = O(finding matching)?

What we have at this point..

Consider some submultibutterfly with N ′ inputs.
Each set of αN ′ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly?
Only if we are asking to extend at most αN ′ paths.

Only consider packets going to destinations 0 mod L = 1/2α.
In our submulti at most (N ′/2)/L = N ′α top destinations are valid.
So number of paths requesting will be at most αN ′. top.

By Hall’s Theorem: all paths will extend forward.
So we overdesign the network by a factor L = 1/2α = O(1).

But will extending paths take time = O(finding matching)?

What we have at this point..

Consider some submultibutterfly with N ′ inputs.
Each set of αN ′ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly?
Only if we are asking to extend at most αN ′ paths.

Only consider packets going to destinations 0 mod L = 1/2α.
In our submulti at most (N ′/2)/L = N ′α top destinations are valid.
So number of paths requesting will be at most αN ′. top.

By Hall’s Theorem: all paths will extend forward.
So we overdesign the network by a factor L = 1/2α = O(1).
But will extending paths take time = O(finding matching)?

Parallel algorithm to find the matching

I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.

I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |

I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.

I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.

I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.

Number of requests received is at least |T ′|+ 2(|T | − |T ′|)
d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|

But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|

But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S |

≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S |

≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Parallel algorithm to find the matching
I S nodes wish to extend path, send request to neighbours.
I Requests go to set T , with |T | ≥ β|S |
I Those T ′ that get just 1 request, send back acknowledgement.
I Requesters getting acknowledgement extend their path.
I Repeat.

Number of requests sent out from S is d |S |.
Number of requests received is at least |T ′|+ 2(|T | − |T ′|)

d |S | ≥ |T ′|+ 2(|T | − |T ′|) = 2|T | − |T ′|
But |T | ≥ β|S |.

|T ′| ≥ 2|T | − d |S | ≥ 2β|S | − d |S | ≥ |S |(2β − d).

The |T ′| acknowledgements must go to at least |T ′|/d requesters.

Number of successful requesters ≥ |S |(2β/d − 1).

Constant fraction progress if 2β > d

Time per level O(log N), overall O(log2 N).

Concluding remarks

I Random graphs are very powerful.

I Note however that we know that with high probability we will
have expansion, but there is not good way to decide how
much expansion there is.

I Eigenvalues of adjacency or similar matrices give approximate
estimate of expansion.

I Deterministic algorithms exist for constructing expanders, but
they give smaller β for same d , α.

I Multibenes is also similarly defined.
I Enables requests to be added while others are in progress.

I Do not know what happens with higher radix Butterfly.

Concluding remarks

I Random graphs are very powerful.

I Note however that we know that with high probability we will
have expansion, but there is not good way to decide how
much expansion there is.

I Eigenvalues of adjacency or similar matrices give approximate
estimate of expansion.

I Deterministic algorithms exist for constructing expanders, but
they give smaller β for same d , α.

I Multibenes is also similarly defined.
I Enables requests to be added while others are in progress.

I Do not know what happens with higher radix Butterfly.

Concluding remarks

I Random graphs are very powerful.

I Note however that we know that with high probability we will
have expansion, but there is not good way to decide how
much expansion there is.

I Eigenvalues of adjacency or similar matrices give approximate
estimate of expansion.

I Deterministic algorithms exist for constructing expanders, but
they give smaller β for same d , α.

I Multibenes is also similarly defined.
I Enables requests to be added while others are in progress.

I Do not know what happens with higher radix Butterfly.

Concluding remarks

I Random graphs are very powerful.

I Note however that we know that with high probability we will
have expansion, but there is not good way to decide how
much expansion there is.

I Eigenvalues of adjacency or similar matrices give approximate
estimate of expansion.

I Deterministic algorithms exist for constructing expanders, but
they give smaller β for same d , α.

I Multibenes is also similarly defined.
I Enables requests to be added while others are in progress.

I Do not know what happens with higher radix Butterfly.

Concluding remarks

I Random graphs are very powerful.

I Note however that we know that with high probability we will
have expansion, but there is not good way to decide how
much expansion there is.

I Eigenvalues of adjacency or similar matrices give approximate
estimate of expansion.

I Deterministic algorithms exist for constructing expanders, but
they give smaller β for same d , α.

I Multibenes is also similarly defined.
I Enables requests to be added while others are in progress.

I Do not know what happens with higher radix Butterfly.

Concluding remarks

I Random graphs are very powerful.

I Note however that we know that with high probability we will
have expansion, but there is not good way to decide how
much expansion there is.

I Eigenvalues of adjacency or similar matrices give approximate
estimate of expansion.

I Deterministic algorithms exist for constructing expanders, but
they give smaller β for same d , α.

I Multibenes is also similarly defined.

I Enables requests to be added while others are in progress.

I Do not know what happens with higher radix Butterfly.

Concluding remarks

I Random graphs are very powerful.

I Note however that we know that with high probability we will
have expansion, but there is not good way to decide how
much expansion there is.

I Eigenvalues of adjacency or similar matrices give approximate
estimate of expansion.

I Deterministic algorithms exist for constructing expanders, but
they give smaller β for same d , α.

I Multibenes is also similarly defined.
I Enables requests to be added while others are in progress.

I Do not know what happens with higher radix Butterfly.

Concluding remarks

I Random graphs are very powerful.

I Note however that we know that with high probability we will
have expansion, but there is not good way to decide how
much expansion there is.

I Eigenvalues of adjacency or similar matrices give approximate
estimate of expansion.

I Deterministic algorithms exist for constructing expanders, but
they give smaller β for same d , α.

I Multibenes is also similarly defined.
I Enables requests to be added while others are in progress.

I Do not know what happens with higher radix Butterfly.

S. Arora, T. Leighton, and B. Maggs, On-line algorithms for
path selection in a nonblocking network, Proceedings of the
ACM Annual Symposium on Theory of Computing, May 1990,
pp. 149–158.

F. T. Leighton and B. M. Maggs, Fast algorithms for routing
around faults in multibutterflies and randomly-wired splitter
networks, IEEE Transactions on Computers 41 (1992), no. 5,
578–587.

