Non-blocking networks based on expander graphs

Abhiram Ranade IIT Bombay

September 22, 2018 ELGGA, BITS Pilani, Hyderabad

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

<ロ> <@> < E> < E> E のQの

Design a network for a telephone switch

Design a network for a telephone switch

► *N* input nodes, *N* output nodes, internal nodes and edges.

Design a network for a telephone switch

► *N* input nodes, *N* output nodes, internal nodes and edges.

 Goal: Given a permutation π establish node disjoint connection from input i to output π(i)

Design a network for a telephone switch

- ► *N* input nodes, *N* output nodes, internal nodes and edges.
- Goal: Given a permutation π establish node disjoint connection from input i to output π(i)
- Algorithm for establishing connections should work fast.

Design a network for a telephone switch

- ► *N* input nodes, *N* output nodes, internal nodes and edges.
- Goal: Given a permutation π establish node disjoint connection from input i to output π(i)
- Algorithm for establishing connections should work fast.

Useful also in a parallel processor

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Design a network for a telephone switch

- ► *N* input nodes, *N* output nodes, internal nodes and edges.
- Goal: Given a permutation π establish node disjoint connection from input i to output π(i)
- Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output.

Design a network for a telephone switch

- ► *N* input nodes, *N* output nodes, internal nodes and edges.
- Goal: Given a permutation π establish node disjoint connection from input i to output π(i)
- Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output. $O(N^2)$ wires. Too expensive.

Design a network for a telephone switch

- ► *N* input nodes, *N* output nodes, internal nodes and edges.
- Goal: Given a permutation π establish node disjoint connection from input i to output π(i)
- Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output. $O(N^2) \text{ wires. Too expensive.}$

Can we design a network using $O(N \log N)$ edges, vertices?

Design a network for a telephone switch

- ► *N* input nodes, *N* output nodes, internal nodes and edges.
- Goal: Given a permutation π establish node disjoint connection from input i to output π(i)
- Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output. $O(N^2)$ wires. Too expensive.

Can we design a network using $O(N \log N)$ edges, vertices? $\Omega(N \log N)$ edges necessary.

Design a network for a telephone switch

- ► *N* input nodes, *N* output nodes, internal nodes and edges.
- Goal: Given a permutation π establish node disjoint connection from input i to output π(i)
- Algorithm for establishing connections should work fast.

Useful also in a parallel processor

Obvious design: Connect each input to each output. $O(N^2)$ wires. Too expensive.

Can we design a network using $O(N \log N)$ edges, vertices? $\Omega(N \log N)$ edges necessary. Shannon 1950

Some relevant networks

The Multibutterfly

- Some relevant networks
- The Multibutterfly
- Path selection algorithm

(ロ)、(型)、(E)、(E)、 E) の(の)

Butterfly network B(N)

Butterfly network B(N)

 $N = 2^n$ inputs, $N = 2^n$ outputs

Butterfly network B(N)

$$N = 2^n$$
 inputs, $N = 2^n$ outputs

Inputs :
$$X : \frac{B(N/2)}{B(N/2)}$$
 : Outputs

Butterfly network B(N)

 $N = 2^n$ inputs, $N = 2^n$ outputs

Inputs : X :
$$\frac{B(N/2)}{B(N/2)}$$
 : Outputs

Unique path from any input i to any output j.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Butterfly network B(N)

 $N = 2^n$ inputs, $N = 2^n$ outputs

Inputs :
$$X : \frac{B(N/2)}{B(N/2)}$$
 : Outputs

Unique path from any input i to any output j.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. If each *i* connects to random $\pi(i)$, then $N/\log N$ vertex disjoint paths can be established with high probability.

Butterfly network B(N)

 $N = 2^n$ inputs, $N = 2^n$ outputs

Inputs :
$$X : \frac{B(N/2)}{B(N/2)}$$
 : Outputs

Unique path from any input i to any output j.

- 1. If each *i* connects to random $\pi(i)$, then $N/\log N$ vertex disjoint paths can be established with high probability.
- 2. \exists permutation π such that at most \sqrt{N} vertex disjoint paths can be established.

Butterfly network B(N)

 $N = 2^n$ inputs, $N = 2^n$ outputs

Inputs :
$$X : \frac{B(N/2)}{B(N/2)}$$
 : Outputs

Unique path from any input i to any output j.

- 1. If each *i* connects to random $\pi(i)$, then $N/\log N$ vertex disjoint paths can be established with high probability.
- 2. \exists permutation π such that at most \sqrt{N} vertex disjoint paths can be established.
- 3. Edge disjoint paths exist for $\pi(i) = i + \alpha \mod N$, all α

Benes Network: $Be(n) = B(N) : B(N)^{-1}$

<□ > < @ > < E > < E > E のQ @

Benes Network: $Be(n) = B(N) : B(N)^{-1}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Benes Network: $Be(n) = B(N) : B(N)^{-1}$

Theorem: We can establish vertex disjoint paths for any π .

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Algorithm has to make N connections.

Algorithm has to make N connections.

Assign N/2 connections to top Benes, N/2 to bottom Benes s.t.

・ロト・日本・モート モー うへぐ

Algorithm has to make N connections.

Assign N/2 connections to top Benes, N/2 to bottom Benes s.t.

 Top, Bottom Benes are required to recursively realize smaller permutations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Algorithm has to make N connections.

Assign N/2 connections to top Benes, N/2 to bottom Benes s.t.

 Top, Bottom Benes are required to recursively realize smaller permutations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

No conflicts produced in outermost wiring layers.

Algorithm has to make N connections.

Assign N/2 connections to top Benes, N/2 to bottom Benes s.t.

- Top, Bottom Benes are required to recursively realize smaller permutations.
- No conflicts produced in outermost wiring layers.

$$i - \pi(i)$$
 path uses top $\Leftrightarrow i + \frac{N}{2} - \pi(i + \frac{N}{2})$ path uses bottom

Algorithm has to make N connections.

Assign N/2 connections to top Benes, N/2 to bottom Benes s.t.

 Top, Bottom Benes are required to recursively realize smaller permutations.

No conflicts produced in outermost wiring layers.

$$i$$
 —- $\pi(i)$ path uses top \Leftrightarrow $i+rac{N}{2}$ —- $\pi(i+rac{N}{2})$ path uses bottom

Similarly for the outputs.

$C(i) = i + \frac{N}{2}$, $C(i + \frac{N}{2}) = i$ i, C(i) : competing pair.

Phased algorithm:

Invariant: Competing pairs are both assigned or both not.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Invariant: Competing pairs are both assigned or both not.

► Consider any unassigned competing pair of inputs *i*, *C*(*i*).

Invariant: Competing pairs are both assigned or both not.

- ► Consider any unassigned competing pair of inputs *i*, *C*(*i*).
- ► Connect $i \pi(i)$ through top, $C(i) \pi(C(i))$ through bottom.

Invariant: Competing pairs are both assigned or both not.

- ► Consider any unassigned competing pair of inputs *i*, *C*(*i*).
- ► Connect $i \pi(i)$ through top, $C(i) \pi(C(i))$ through bottom.

• If $\pi(i), \pi(C(i))$ are competing pairs, then phase ends.

- ► Consider any unassigned competing pair of inputs *i*, *C*(*i*).
- ► Connect $i \pi(i)$ through top, $C(i) \pi(C(i))$ through bottom.
- If $\pi(i), \pi(C(i))$ are competing pairs, then phase ends.
- Otherwise we have two half touched pairs on outputs.

- ► Consider any unassigned competing pair of inputs *i*, *C*(*i*).
- ► Connect $i \pi(i)$ through top, $C(i) \pi(C(i))$ through bottom.
- If $\pi(i), \pi(C(i))$ are competing pairs, then phase ends.
- Otherwise we have two half touched pairs on outputs.
- Connect $C(\pi(i))$ back using bottom pair.

- ► Consider any unassigned competing pair of inputs *i*, *C*(*i*).
- ► Connect $i \pi(i)$ through top, $C(i) \pi(C(i))$ through bottom.
- If $\pi(i), \pi(C(i))$ are competing pairs, then phase ends.
- Otherwise we have two half touched pairs on outputs.
- Connect $C(\pi(i))$ back using bottom pair.
- Connect $C(\pi(C(i)))$ back using top pair.

- ► Consider any unassigned competing pair of inputs *i*, *C*(*i*).
- ► Connect $i \pi(i)$ through top, $C(i) \pi(C(i))$ through bottom.
- If $\pi(i), \pi(C(i))$ are competing pairs, then phase ends.
- Otherwise we have two half touched pairs on outputs.
- Connect $C(\pi(i))$ back using bottom pair.
- Connect $C(\pi(C(i)))$ back using top pair.
- Phase ends, or two half touched pairs on inputs.

- ► Consider any unassigned competing pair of inputs *i*, *C*(*i*).
- ► Connect $i \pi(i)$ through top, $C(i) \pi(C(i))$ through bottom.
- If $\pi(i), \pi(C(i))$ are competing pairs, then phase ends.
- Otherwise we have two half touched pairs on outputs.
- Connect $C(\pi(i))$ back using bottom pair.
- Connect $C(\pi(C(i)))$ back using top pair.
- Phase ends, or two half touched pairs on inputs. Repeat...

d edges to top and d edges to bottom from each node.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

d edges to top and d edges to bottom from each node.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

d = 2 shown.

d edges to top and d edges to bottom from each node.

d = 2 shown.

Connections are random, s.t. all indegree, outdegree are 2d.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

d edges to top and d edges to bottom from each node.

d = 2 shown.

Connections are random, s.t. all indegree, outdegree are 2d.

Produces nice expansion properties.

d edges to top and d edges to bottom from each node.

d = 2 shown.

Connections are random, s.t. all indegree, outdegree are 2d.

Produces nice expansion properties.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Effect of random edges: W.h.p. expansion from level to level: k nodes in level 0 connect to βk nodes in top, and βk nodes in bottom, for $k \leq \alpha N$.

d edges to top and *d* edges to bottom from each node.

d = 2 shown.

Connections are random, s.t. all indegree, outdegree are 2d.

Produces nice expansion properties.

Effect of random edges: W.h.p. expansion from level to level: k nodes in level 0 connect to βk nodes in top, and βk nodes in bottom, for $k \leq \alpha N$.

Even for $\beta > 1$ d = O(1) suffices.

- ◆ □ ▶ → 個 ▶ → 目 ▶ → 目 → のへで

is a bipartite graph (U, V, E) where |U| = N, |V| = N/2 degree in U, V are resp. at most d, 2d, and every subset of $k \le \alpha N$ nodes of U has edges to at least βk nodes of V.

is a bipartite graph (U, V, E) where |U| = N, |V| = N/2 degree in U, V are resp. at most d, 2d, and every subset of $k \le \alpha N$ nodes of U has edges to at least βk nodes of V.

Concentrators connect level 0 to top and to bottor $M_d(N/2)$ s

is a bipartite graph (U, V, E) where |U| = N, |V| = N/2 degree in U, V are resp. at most d, 2d, and every subset of $k \le \alpha N$ nodes of U has edges to at least βk nodes of V.

Concentrators connect level 0 to top and to bottor $M_d(N/2)$ s

Theorem: Concentrator exists for $\alpha > 0$, $\beta > 1$ s.t. $\alpha \beta < 1$, and

$$d > eta + 1 + rac{eta + 1 + \ln 4eta}{\ln(1/2lphaeta)}$$

is a bipartite graph (U, V, E) where |U| = N, |V| = N/2 degree in U, V are resp. at most d, 2d, and every subset of $k \le \alpha N$ nodes of U has edges to at least βk nodes of V.

Concentrators connect level 0 to top and to bottor $M_d(N/2)$ s

Theorem: Concentrator exists for $\alpha > 0$, $\beta > 1$ s.t. $\alpha \beta < 1$, and

$$d > \beta + 1 + rac{eta + 1 + \ln 4eta}{\ln(1/2lphaeta)}$$

Proof: Randomized construction: Start with vertices U, V

is a bipartite graph (U, V, E) where |U| = N, |V| = N/2 degree in U, V are resp. at most d, 2d, and every subset of $k \le \alpha N$ nodes of U has edges to at least βk nodes of V.

Concentrators connect level 0 to top and to bottor $M_d(N/2)$ s

Theorem: Concentrator exists for $\alpha > 0$, $\beta > 1$ s.t. $\alpha \beta < 1$, and

$$d > \beta + 1 + \frac{\beta + 1 + \ln 4\beta}{\ln(1/2\alpha\beta)}$$

Proof: Randomized construction: Start with vertices U, V

• Replace each vertex in U, V resp. by d, 2d vertices.

is a bipartite graph (U, V, E) where |U| = N, |V| = N/2 degree in U, V are resp. at most d, 2d, and every subset of $k \le \alpha N$ nodes of U has edges to at least βk nodes of V.

Concentrators connect level 0 to top and to bottor $M_d(N/2)$ s

Theorem: Concentrator exists for $\alpha > 0$, $\beta > 1$ s.t. $\alpha \beta < 1$, and

$$d > \beta + 1 + \frac{\beta + 1 + \ln 4\beta}{\ln(1/2\alpha\beta)}$$

Proof: Randomized construction: Start with vertices U, V

- ▶ Replace each vertex in U, V resp. by d, 2d vertices.
- Pick a random matching on the two pairs of Nd vertices.

is a bipartite graph (U, V, E) where |U| = N, |V| = N/2 degree in U, V are resp. at most d, 2d, and every subset of $k \le \alpha N$ nodes of U has edges to at least βk nodes of V.

Concentrators connect level 0 to top and to bottor $M_d(N/2)$ s

Theorem: Concentrator exists for $\alpha > 0$, $\beta > 1$ s.t. $\alpha \beta < 1$, and

$$d > \beta + 1 + rac{eta + 1 + \ln 4eta}{\ln(1/2lphaeta)}$$

Proof: Randomized construction: Start with vertices U, V

- Replace each vertex in U, V resp. by d, 2d vertices.
- Pick a random matching on the two pairs of Nd vertices.

Collapse vertices back.

is a bipartite graph (U, V, E) where |U| = N, |V| = N/2 degree in U, V are resp. at most d, 2d, and every subset of $k \le \alpha N$ nodes of U has edges to at least βk nodes of V.

Concentrators connect level 0 to top and to bottor $M_d(N/2)$ s

Theorem: Concentrator exists for $\alpha > 0$, $\beta > 1$ s.t. $\alpha \beta < 1$, and

$$d > \beta + 1 + \frac{\beta + 1 + \ln 4\beta}{\ln(1/2\alpha\beta)}$$

Proof: Randomized construction: Start with vertices U, V

- ▶ Replace each vertex in U, V resp. by d, 2d vertices.
- Pick a random matching on the two pairs of Nd vertices.

- Collapse vertices back.
- U have degree $\leq d$, V have degree $\leq 2d$

is a bipartite graph (U, V, E) where |U| = N, |V| = N/2 degree in U, V are resp. at most d, 2d, and every subset of $k \le \alpha N$ nodes of U has edges to at least βk nodes of V.

Concentrators connect level 0 to top and to bottor $M_d(N/2)$ s

Theorem: Concentrator exists for $\alpha > 0$, $\beta > 1$ s.t. $\alpha \beta < 1$, and

$$d > \beta + 1 + \frac{\beta + 1 + \ln 4\beta}{\ln(1/2\alpha\beta)}$$

Proof: Randomized construction: Start with vertices U, V

- ▶ Replace each vertex in U, V resp. by d, 2d vertices.
- Pick a random matching on the two pairs of Nd vertices.
- Collapse vertices back.
- U have degree $\leq d$, V have degree $\leq 2d$

Remove parallel edges if any

is a bipartite graph (U, V, E) where |U| = N, |V| = N/2 degree in U, V are resp. at most d, 2d, and every subset of $k \le \alpha N$ nodes of U has edges to at least βk nodes of V.

Concentrators connect level 0 to top and to bottor $M_d(N/2)$ s

Theorem: Concentrator exists for $\alpha > 0$, $\beta > 1$ s.t. $\alpha \beta < 1$, and

$$d > \beta + 1 + rac{eta + 1 + \ln 4eta}{\ln(1/2lphaeta)}$$

Proof: Randomized construction: Start with vertices U, V

- Replace each vertex in U, V resp. by d, 2d vertices.
- Pick a random matching on the two pairs of Nd vertices.
- Collapse vertices back.
- U have degree $\leq d$, V have degree $\leq 2d$

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0.

is a bipartite graph (U, V, E) where |U| = N, |V| = N/2 degree in U, V are resp. at most d, 2d, and every subset of $k \le \alpha N$ nodes of U has edges to at least βk nodes of V.

Concentrators connect level 0 to top and to bottor $M_d(N/2)$ s

Theorem: Concentrator exists for $\alpha > 0$, $\beta > 1$ s.t. $\alpha \beta < 1$, and

$$d > \beta + 1 + rac{eta + 1 + \ln 4eta}{\ln(1/2lphaeta)}$$

Proof: Randomized construction: Start with vertices U, V

- Replace each vertex in U, V resp. by d, 2d vertices.
- Pick a random matching on the two pairs of Nd vertices.
- Collapse vertices back.
- U have degree $\leq d$, V have degree $\leq 2d$

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

is a bipartite graph (U, V, E) where |U| = N, |V| = N/2 degree in U, V are resp. at most d, 2d, and every subset of $k \le \alpha N$ nodes of U has edges to at least βk nodes of V.

Concentrators connect level 0 to top and to bottor $M_d(N/2)$ s

Theorem: Concentrator exists for $\alpha > 0$, $\beta > 1$ s.t. $\alpha \beta < 1$, and

$$d > \beta + 1 + rac{eta + 1 + \ln 4eta}{\ln(1/2lphaeta)}$$

Proof: Randomized construction: Start with vertices U, V

- Replace each vertex in U, V resp. by d, 2d vertices.
- Pick a random matching on the two pairs of Nd vertices.
- Collapse vertices back.
- U have degree $\leq d$, V have degree $\leq 2d$

Remove parallel edges if any

Resulting graph satisfies definition with probability > 0. (Next)

If you increase d, probability increases very rapidly. =

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Assume not concentrator.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Assume not concentrator.

 $\exists S \subseteq U \text{ s.t. } |S| = k \leq \alpha N \text{ and } |T = Nbr(S)| < \beta k.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume not concentrator.

 $\exists S \subseteq U \text{ s.t. } |S| = k \leq \alpha N \text{ and } |T = Nbr(S)| < \beta k.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

k can range between 1 and αN

Assume not concentrator.

 $\exists S \subseteq U \text{ s.t. } |S| = k \leq \alpha N \text{ and } |T = Nbr(S)| < \beta k.$

k can range between 1 and αN For each k there are $\binom{N}{k}$ choices for S, and $\binom{N/2}{\beta k}$ choices for T.

Assume not concentrator.

 $\exists S \subseteq U \text{ s.t. } |S| = k \leq \alpha N \text{ and } |T = Nbr(S)| < \beta k.$

k can range between 1 and αN For each k there are $\binom{N}{k}$ choices for S, and $\binom{N/2}{\beta k}$ choices for T.

Probability that construction does not give a concentrator:

$$\leq \sum_{k=1}^{k=\alpha N} \binom{N}{k} \binom{N/2}{\beta k} \Pr[\text{fixed } T \supseteq \text{nbrhood of fixed } S]$$

Assume not concentrator. $\Box \subseteq \Box$

 $\exists S \subseteq U \text{ s.t. } |S| = k \leq \alpha N \text{ and } |T = Nbr(S)| < \beta k.$

k can range between 1 and αN For each k there are $\binom{N}{k}$ choices for S, and $\binom{N/2}{\beta k}$ choices for T.

Probability that construction does not give a concentrator:

$$\leq \sum_{k=1}^{k=\alpha N} \binom{N}{k} \binom{N/2}{\beta k} \Pr[\text{fixed } T \supseteq \text{nbrhood of fixed } S]$$

In the construction we first explode S to S' with kd = s vertices and T to T' $2\beta kd = t$ vertices.
Probability of expansion

Assume not concentrator.

 $\exists S \subseteq U \text{ s.t. } |S| = k \leq \alpha N \text{ and } |T = Nbr(S)| < \beta k.$

k can range between 1 and αN For each k there are $\binom{N}{k}$ choices for S, and $\binom{N/2}{\beta k}$ choices for T.

Probability that construction does not give a concentrator:

$$\leq \sum_{k=1}^{k=\alpha N} \binom{N}{k} \binom{N/2}{\beta k} \Pr[\text{fixed } T \supseteq \text{nbrhood of fixed } S]$$

In the construction we first explode S to S' with kd = s vertices and T to T' $2\beta kd = t$ vertices.

Pr[fixed $T \supseteq$ nbrhood of fixed S] = $\frac{t \cdot t - 1 \cdots t - s + 1}{Nd \cdots Nd - 1 \cdots Nd - s + 1}$

Probability of expansion

 $\leq \left(\frac{t}{Md}\right)^{s}$

Assume not concentrator.

 $\exists S \subseteq U \text{ s.t. } |S| = k \leq \alpha N \text{ and } |T = Nbr(S)| < \beta k.$

k can range between 1 and αN For each k there are $\binom{N}{k}$ choices for S, and $\binom{N/2}{\beta k}$ choices for T.

Probability that construction does not give a concentrator:

$$\leq \sum_{k=1}^{k=\alpha N} \binom{N}{k} \binom{N/2}{\beta k} \Pr[\text{fixed } T \supseteq \text{nbrhood of fixed } S]$$

In the construction we first explode S to S' with kd = s vertices and T to T' $2\beta kd = t$ vertices.

Pr[fixed $T \supseteq$ nbrhood of fixed S] = $\frac{t \cdot t - 1 \cdots t - s + 1}{Nd \cdots Nd - 1 \cdots Nd - s + 1}$

Probability of expansion

Assume not concentrator.

 $\exists S \subseteq U \text{ s.t. } |S| = k \leq \alpha N \text{ and } |T = Nbr(S)| < \beta k.$

k can range between 1 and αN For each k there are $\binom{N}{k}$ choices for S, and $\binom{N/2}{\beta k}$ choices for T.

Probability that construction does not give a concentrator:

$$\leq \sum_{k=1}^{k=\alpha N} \binom{N}{k} \binom{N/2}{\beta k} \Pr[\text{fixed } T \supseteq \text{nbrhood of fixed } S]$$

In the construction we first explode S to S' with kd = s vertices and T to T' $2\beta kd = t$ vertices.

Pr[fixed $T \supseteq$ nbrhood of fixed S] = $\frac{t \cdot t - 1 \cdots t - s + 1}{Nd \cdots Nd - 1 \cdots Nd - s + 1}$

$$\leq \left(\frac{t}{Nd}\right)^{s} = \left(\frac{2\beta k}{N}\right)^{ka}$$

Probability that construction does not give a concentrator:

$$\leq \sum_{k=1}^{k=\alpha N} \binom{N}{k} \binom{N/2}{\beta k} \left(\frac{2\beta k}{N}\right)^{kd}$$

Probability that construction does not give a concentrator:

$$\leq \sum_{k=1}^{k=\alpha N} \binom{N}{k} \binom{N/2}{\beta k} \left(\frac{2\beta k}{N}\right)^{kd} \leq \sum_{k=1}^{k=\alpha N} \left(\frac{Ne}{k}\right)^{k} \left(\frac{Ne/2}{\beta k}\right)^{\beta k} \left(\frac{2\beta k}{N}\right)^{kd}$$

Probability that construction does not give a concentrator:

$$\leq \sum_{k=1}^{k=\alpha N} \binom{N}{k} \binom{N/2}{\beta k} \left(\frac{2\beta k}{N}\right)^{kd} \leq \sum_{k=1}^{k=\alpha N} \left(\frac{Ne}{k}\right)^{k} \left(\frac{Ne/2}{\beta k}\right)^{\beta k} \left(\frac{2\beta k}{N}\right)^{kd}$$

$$\leq \sum_{k=1}^{k=\alpha N} \left(\left(\frac{\kappa}{N} \right)^{d-\beta-1} e^{\beta+1} (2\beta)^{d-\beta} \right)^k$$

Probability that construction does not give a concentrator:

$$\leq \sum_{k=1}^{k=\alpha N} \binom{N}{k} \binom{N/2}{\beta k} \left(\frac{2\beta k}{N}\right)^{kd} \leq \sum_{k=1}^{k=\alpha N} \left(\frac{Ne}{k}\right)^{k} \left(\frac{Ne/2}{\beta k}\right)^{\beta k} \left(\frac{2\beta k}{N}\right)^{kd}$$

$$\leq \sum_{k=1}^{k=\alpha N} \left(\left(\frac{K}{N}\right)^{d-\beta-1} e^{\beta+1} (2\beta)^{d-\beta} \right)^k \leq \sum_{k=1}^{k=\alpha N} \left(\alpha^{d-\beta-1} e^{\beta+1} (2\beta)^{d-\beta} \right)^k$$

Probability that construction does not give a concentrator:

$$\leq \sum_{k=1}^{k=\alpha N} \binom{N}{k} \binom{N/2}{\beta k} \left(\frac{2\beta k}{N}\right)^{kd} \leq \sum_{k=1}^{k=\alpha N} \left(\frac{Ne}{k}\right)^{k} \left(\frac{Ne/2}{\beta k}\right)^{\beta k} \left(\frac{2\beta k}{N}\right)^{kd}$$

$$\leq \sum_{k=1}^{k=\alpha N} \left(\left(\frac{K}{N}\right)^{d-\beta-1} e^{\beta+1} (2\beta)^{d-\beta} \right)^k \leq \sum_{k=1}^{k=\alpha N} \left(\alpha^{d-\beta-1} e^{\beta+1} (2\beta)^{d-\beta} \right)^k$$

Using $\binom{n}{r} \leq (ne/r)^r, k/N \leq \alpha$

Probability that construction does not give a concentrator:

$$\leq \sum_{k=1}^{k=\alpha N} \binom{N}{k} \binom{N/2}{\beta k} \left(\frac{2\beta k}{N}\right)^{kd} \leq \sum_{k=1}^{k=\alpha N} \left(\frac{Ne}{k}\right)^{k} \left(\frac{Ne/2}{\beta k}\right)^{\beta k} \left(\frac{2\beta k}{N}\right)^{kd}$$

$$\leq \sum_{k=1}^{k=\alpha N} \left(\left(\frac{K}{N}\right)^{d-\beta-1} e^{\beta+1} (2\beta)^{d-\beta} \right)^k \leq \sum_{k=1}^{k=\alpha N} \left(\alpha^{d-\beta-1} e^{\beta+1} (2\beta)^{d-\beta} \right)^k$$

Using $\binom{n}{r} \leq (ne/r)^r, k/N \leq \alpha$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Geometric series is < 1 if:

$$\alpha^{d-\beta-1}e^{\beta+1}(2\beta)^{d-\beta} < 1/2$$

Probability that construction does not give a concentrator:

$$\leq \sum_{k=1}^{k=\alpha N} \binom{N}{k} \binom{N/2}{\beta k} \left(\frac{2\beta k}{N}\right)^{kd} \leq \sum_{k=1}^{k=\alpha N} \left(\frac{Ne}{k}\right)^{k} \left(\frac{Ne/2}{\beta k}\right)^{\beta k} \left(\frac{2\beta k}{N}\right)^{kd}$$

$$\leq \sum_{k=1}^{k=\alpha N} \left(\left(\frac{K}{N}\right)^{d-\beta-1} e^{\beta+1} (2\beta)^{d-\beta} \right)^k \leq \sum_{k=1}^{k=\alpha N} \left(\alpha^{d-\beta-1} e^{\beta+1} (2\beta)^{d-\beta} \right)^k$$

Using $\binom{n}{r} \leq (ne/r)^r, k/N \leq \alpha$

Geometric series is < 1 if:

$$\alpha^{d-\beta-1}e^{\beta+1}(2\beta)^{d-\beta} < 1/2$$

Simplifying gives the result.

Consider some submultibutterfly with N' inputs.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Consider some submultibutterfly with N' inputs. Each set of $\alpha N'$ inputs will have βk neighbours in top of next.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider some submultibutterfly with N' inputs. Each set of $\alpha N'$ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly?

Consider some submultibutterfly with N' inputs. Each set of $\alpha N'$ inputs will have βk neighbours in top of next.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Can we extend paths in this submultibutterfly? Only if we are asking to extend at most $\alpha N'$ paths.

Consider some submultibutterfly with N' inputs. Each set of $\alpha N'$ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly? Only if we are asking to extend at most $\alpha N'$ paths.

Only consider packets going to destinations 0 mod $L = 1/2\alpha$.

Consider some submultibutterfly with N' inputs. Each set of $\alpha N'$ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly? Only if we are asking to extend at most $\alpha N'$ paths.

Only consider packets going to destinations 0 mod $L = 1/2\alpha$. In our submulti at most $(N'/2)/L = N'\alpha$ top destinations are valid.

Consider some submultibutterfly with N' inputs. Each set of $\alpha N'$ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly? Only if we are asking to extend at most $\alpha N'$ paths.

Only consider packets going to destinations 0 mod $L = 1/2\alpha$. In our submulti at most $(N'/2)/L = N'\alpha$ top destinations are valid. So number of paths requesting will be at most $\alpha N'$. top.

Consider some submultibutterfly with N' inputs. Each set of $\alpha N'$ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly? Only if we are asking to extend at most $\alpha N'$ paths.

Only consider packets going to destinations 0 mod $L = 1/2\alpha$. In our submulti at most $(N'/2)/L = N'\alpha$ top destinations are valid. So number of paths requesting will be at most $\alpha N'$. top.

By Hall's Theorem: all paths will extend forward.

Consider some submultibutterfly with N' inputs. Each set of $\alpha N'$ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly? Only if we are asking to extend at most $\alpha N'$ paths.

Only consider packets going to destinations 0 mod $L = 1/2\alpha$. In our submulti at most $(N'/2)/L = N'\alpha$ top destinations are valid. So number of paths requesting will be at most $\alpha N'$. top.

By Hall's Theorem: all paths will extend forward. So we overdesign the network by a factor $L = 1/2\alpha = O(1)$.

Consider some submultibutterfly with N' inputs. Each set of $\alpha N'$ inputs will have βk neighbours in top of next.

Can we extend paths in this submultibutterfly? Only if we are asking to extend at most $\alpha N'$ paths.

Only consider packets going to destinations 0 mod $L = 1/2\alpha$. In our submulti at most $(N'/2)/L = N'\alpha$ top destinations are valid. So number of paths requesting will be at most $\alpha N'$. top.

By Hall's Theorem: all paths will extend forward. So we overdesign the network by a factor $L = 1/2\alpha = O(1)$. But will extending paths take time = O(finding matching)?

► *S* nodes wish to extend path, send request to neighbours.

► *S* nodes wish to extend path, send request to neighbours.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Requests go to set T, with $|T| \ge \beta |S|$

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- Those T' that get just 1 request, send back acknowledgement.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- Those T' that get just 1 request, send back acknowledgement.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Requesters getting acknowledgement extend their path.

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- Those T' that get just 1 request, send back acknowledgement.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Requesters getting acknowledgement extend their path.
- Repeat.

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- Those T' that get just 1 request, send back acknowledgement.

- Requesters getting acknowledgement extend their path.
- Repeat.

Number of requests sent out from S is d|S|.

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- Those T' that get just 1 request, send back acknowledgement.

- Requesters getting acknowledgement extend their path.
- Repeat.

Number of requests sent out from S is d|S|. Number of requests received is at least |T'| + 2(|T| - |T'|)

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- Those T' that get just 1 request, send back acknowledgement.
- Requesters getting acknowledgement extend their path.
- Repeat.

Number of requests sent out from S is d|S|. Number of requests received is at least |T'| + 2(|T| - |T'|) $d|S| \ge |T'| + 2(|T| - |T'|) = 2|T| - |T'|$

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- Those T' that get just 1 request, send back acknowledgement.
- Requesters getting acknowledgement extend their path.
- Repeat.

Number of requests sent out from S is d|S|. Number of requests received is at least |T'| + 2(|T| - |T'|) $d|S| \ge |T'| + 2(|T| - |T'|) = 2|T| - |T'|$

But $|T| \ge \beta |S|$.

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- Those T' that get just 1 request, send back acknowledgement.
- Requesters getting acknowledgement extend their path.

Repeat.

Number of requests sent out from S is d|S|. Number of requests received is at least |T'| + 2(|T| - |T'|) $d|S| \ge |T'| + 2(|T| - |T'|) = 2|T| - |T'|$

But $|T| \ge \beta |S|$.

 $|T'| \geq 2|T| - d|S|$

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- ► Those T' that get just 1 request, send back acknowledgement.
- Requesters getting acknowledgement extend their path.
- Repeat.

Number of requests sent out from *S* is d|S|. Number of requests received is at least |T'| + 2(|T| - |T'|) $d|S| \ge |T'| + 2(|T| - |T'|) = 2|T| - |T'|$

But $|T| \ge \beta |S|$.

 $|T'| \geq 2|T| - d|S| \geq 2\beta|S| - d|S|$

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- Those T' that get just 1 request, send back acknowledgement.
- Requesters getting acknowledgement extend their path.
- Repeat.

Number of requests sent out from S is d|S|. Number of requests received is at least |T'| + 2(|T| - |T'|) $d|S| \ge |T'| + 2(|T| - |T'|) = 2|T| - |T'|$ But $|T| \ge \beta|S|$.

$$|T'| \ge 2|T| - d|S| \ge 2\beta|S| - d|S| \ge |S|(2\beta - d).$$

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- Those T' that get just 1 request, send back acknowledgement.
- Requesters getting acknowledgement extend their path.
- Repeat.

Number of requests sent out from S is d|S|. Number of requests received is at least |T'| + 2(|T| - |T'|) $d|S| \ge |T'| + 2(|T| - |T'|) = 2|T| - |T'|$ But $|T| \ge \beta|S|$.

$$|T'| \ge 2|T| - d|S| \ge 2\beta|S| - d|S| \ge |S|(2\beta - d).$$

The |T'| acknowledgements must go to at least |T'|/d requesters.
Parallel algorithm to find the matching

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- Those T' that get just 1 request, send back acknowledgement.
- Requesters getting acknowledgement extend their path.
- Repeat.

Number of requests sent out from S is d|S|. Number of requests received is at least |T'| + 2(|T| - |T'|) $d|S| \ge |T'| + 2(|T| - |T'|) = 2|T| - |T'|$ But $|T| \ge \beta|S|$.

$$|T'| \ge 2|T| - d|S| \ge 2\beta|S| - d|S| \ge |S|(2\beta - d).$$

The |T'| acknowledgements must go to at least |T'|/d requesters.

Number of successful requesters $\geq |S|(2\beta/d-1)$.

Parallel algorithm to find the matching

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- ► Those T' that get just 1 request, send back acknowledgement.
- Requesters getting acknowledgement extend their path.
- Repeat.

Number of requests sent out from *S* is d|S|. Number of requests received is at least |T'| + 2(|T| - |T'|) $d|S| \ge |T'| + 2(|T| - |T'|) = 2|T| - |T'|$ But $|T| \ge \beta |S|$.

$$|T'| \ge 2|T| - d|S| \ge 2\beta|S| - d|S| \ge |S|(2\beta - d).$$

The |T'| acknowledgements must go to at least |T'|/d requesters.

Number of successful requesters $\geq |S|(2\beta/d-1)$.

Constant fraction progress if $2\beta > d$

Parallel algorithm to find the matching

- ► *S* nodes wish to extend path, send request to neighbours.
- Requests go to set T, with $|T| \ge \beta |S|$
- Those T' that get just 1 request, send back acknowledgement.
- Requesters getting acknowledgement extend their path.
- Repeat.

Number of requests sent out from S is d|S|. Number of requests received is at least |T'| + 2(|T| - |T'|) $d|S| \ge |T'| + 2(|T| - |T'|) = 2|T| - |T'|$ But $|T| \ge \beta|S|$.

$$|T'| \ge 2|T| - d|S| \ge 2\beta|S| - d|S| \ge |S|(2\beta - d).$$

The |T'| acknowledgements must go to at least |T'|/d requesters.

Number of successful requesters $\geq |S|(2\beta/d-1)$.

Constant fraction progress if $2\beta > d$

Time per level $O(\log N)$, overall $O(\log^2 N)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Random graphs are very powerful.

- Random graphs are very powerful.
- Note however that we know that with high probability we will have expansion, but there is not good way to decide how much expansion there is.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Random graphs are very powerful.
- Note however that we know that with high probability we will have expansion, but there is not good way to decide how much expansion there is.
- Eigenvalues of adjacency or similar matrices give approximate estimate of expansion.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Random graphs are very powerful.
- Note however that we know that with high probability we will have expansion, but there is not good way to decide how much expansion there is.
- Eigenvalues of adjacency or similar matrices give approximate estimate of expansion.
- Deterministic algorithms exist for constructing expanders, but they give smaller β for same d, α.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Random graphs are very powerful.
- Note however that we know that with high probability we will have expansion, but there is not good way to decide how much expansion there is.
- Eigenvalues of adjacency or similar matrices give approximate estimate of expansion.
- Deterministic algorithms exist for constructing expanders, but they give smaller β for same d, α.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Multibenes is also similarly defined.

- Random graphs are very powerful.
- Note however that we know that with high probability we will have expansion, but there is not good way to decide how much expansion there is.
- Eigenvalues of adjacency or similar matrices give approximate estimate of expansion.
- Deterministic algorithms exist for constructing expanders, but they give smaller β for same d, α.
- Multibenes is also similarly defined.
 - Enables requests to be added while others are in progress.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Random graphs are very powerful.
- Note however that we know that with high probability we will have expansion, but there is not good way to decide how much expansion there is.
- Eigenvalues of adjacency or similar matrices give approximate estimate of expansion.
- Deterministic algorithms exist for constructing expanders, but they give smaller β for same d, α.
- Multibenes is also similarly defined.
 - Enables requests to be added while others are in progress.

Do not know what happens with higher radix Butterfly.

- S. Arora, T. Leighton, and B. Maggs, On-line algorithms for path selection in a nonblocking network, Proceedings of the ACM Annual Symposium on Theory of Computing, May 1990, pp. 149–158.
- F. T. Leighton and B. M. Maggs, *Fast algorithms for routing around faults in multibutterflies and randomly-wired splitter networks*, IEEE Transactions on Computers **41** (1992), no. 5, 578–587.